Beachball Physics

Fundamental game physics supplement
to TSBK03 Advanced Game Programming

by Ingemar Ragnemalm 2023-2024

Introduction

With this text, my intention is to provide a compact written course material that includes the
most vital parts of Sergiy's presentation [8] that are not covered by the course book [7], in or-
der to provide a more complete material than lecture slides, while still more compact than the
books that Sergyi based some of his material on.

Most of this text are essentially high school physics, but my focus will be on the parts that
are relevant for games and real-time animations. Therefore, I have limited interest in the ex-
act formula for, e.g., rotational movement but rather how to model the forces that cause that
motion, preferrably in discrete time. The issue of discrete time is already covered in the
course book, more specifically in the numerical integration chapter, but will appear here too.

It should be stressed that the discrete time case is central to game physics and the big dif-
ference from classic physics. Therefore, numerical integration is vital, as well as working
with time steps, taking steps by At.

The text assumes that you have the prerequistes for a course like TSBKO03, so that you are
comfortable with basic algebra, including 3D space, 3D coordinates, vectors in 2D and 3D,
dot and cross products, matrices and matrix multiplications, and graphics programming with
OpenGL. See chapter 4 in Polygons Feel No Pain [6] for a brief review on the algebra.

The following topics will be covered:
1) Movement in discrete time
2) Fundamental laws
3) Projectiles
4) Collisions
5) Rotations
6) Friction
7) Springs
8) Aerodynamic drag
9) Sailing ships
10) Waves

Some of these are covered by the book, but here I will attempt to cover the fundamentals in
more detail, with more examples.

The main sources that are, in varying degree, used for this text:
» Sergiy Valyukh's lecture slides. [8]
* "Physics for game programmers" by Grant Palmer [1]
* "Physics for game developers" by David M. Bourg [2]
* "Computer Animation" by Parent [3]
* "Game physics" by Eberly [4]
* Baraff & Witkins [5]

This supplement comes with a range of demos, all using, apart from my usual units,
GLUGG for building models and SimpleGUI for controls.

The title, "Beachball Physics", refers to some of the demos, where beachballs were select-
ed as objects where many effects are relevant. (As a bonus, sailing is also close to beaches.)

I expect you to find sections 1 to 3 very basic, but the point here is not to leave things un-
defined. In number 4, things get more practially useful, closing the gap between my books [6]
and [7] a bit. Then, I think, things will get much more interesting. Just getting that kinematic
rotation is IMHO a very neat thing to do. You will see that many applications (especially the
sailing boat) are mainly a matter of applying forces in the proper way, but that is, in my view,
much of what game physics is about.

At this time, the parts relevant to the game physics part of the course are sections 1 to 8.
Section 9 is currently not used and section 10 are extensions of the "other graphics topics".

WORK IN PROGRESS

This is a very early version of this supplement. The text as well as the demos are very
new and not tested much. Errors are to be expected. Let me know if you can see any weak-
nesses, errors or omissions.

2024: Several errors and improvements fixed suggested by Andreas Sahlin! Thank you!

Table of contents

1. Movement i dISCIELE tIMNE........c.ooviiiirrriiiieeeeeeeeitieeeee e e eeeat e e e e e s eesabare e e e e e e e e s esnsraareeeeeeas 4
2. FUNAamental JaWSooiiiiiiiiiiieiiiee et e e et eeen 5
R IR o0 (0 o151 (ST USRS 7
4. COLLISIONS ...vvvvieeeeieee et e e e et e e ettt e e e eeaaeeeeeeaaeeeeeaaeeeeeeaaseeeeenaeeeeeenaneeens 9
oI A0 1 7:15 10) s T IO RRRROP RS 12
6. FTICHION ..ot ee e e e e e e e eetaeeeeeeaaaeeeeentaeeeeeeaseeeeenssreeeens 18
T SPTINIES c.eevieeiiiieeite e ettt e ettt e et e e ettt eestaeeessaeeesaseeesseeessaeeessseeassseeassseeasseeeasseeeassaeennseeennseeennrens 20
8. WINA CFFECES ...t e et e e e e e e e e e eaaeeeeeeaareeeens 22
9. Simulating SAIlING SNIPScccviiiiiiieciie ettt e e e e sre e e sareeesaseeeaneas 29
LO. WAVES oottt et e e e e e e e e e e e aa e e e e e e e eeseaaaraeeeeeeeeenaarrraeaeeas 33

1. Movement in discrete time

The most fundamental thing in game physics is movement, not least for particle systems, but
also for other moving solid objects. Movement is nicely described as position being the inte-
gral of velocity and velocity the integral of acceleration

p(t) = [v(t)dt

v(t) = [a(t)dt

but from there we need to do that in discrete time and we get
p(t) = p(t) + (DAt

v(t) = v(t) + a(t)At

where At is the time from evaluation step to evaluation step, which corresponds to the
frame rate.

Here questions arise with better integration methods and what order these steps should be
performed. In the TSBKO03 course book [7] this is discussed in the chapter on numerical inte-
gration. In the following, this primarily means that the time step At should be included when-
ever we want the physics simulation to be reasonably accurate.

The At variable is usually the time beteen frames. However, you may want to limit the At
when the actual time steps gets very large. Very large At causes big jumps that can both be
disturbing for the player as well as it can cause problems in the physics simulations.

2. Fundamental laws

In this section, I will briefly review some of the most fundamental laws of physics. No sur-
prises here, we are just setting the foundations.

Newton's three laws of motion

Newton's laws are fundamental to classical physics, which describes physics on the level we
need, the way we percieve physics in real life. It describes forces, movement, rotations etc,
just what we need.

Newton's three laws of motion are as follows:
Newton’s first law: the law of inertia.
If no forces act on an object, it will keep the same speed as it has.
Newton’s second law: F = ma
A force on an object will cause an acceleration inversely proportional to its mass.
Newton’s third law: the law of action and reaction

If one object puts a force onto another, there will be a force onto the first object in the other
direction.

The second law is fundamental and appears everywhere. The third law is perhaps the
most interesting one, since it is a reminder on how we can apply forces on an isolated system,
like a constraint system. As long as we balance the forces, we will not add unwanted move-

ment to the system.
O (-0
Cr O = =0

One object applies a force on the other and both move, but if one object is smaller (less
mass) it will move faster according to F = ma.

However, in practice you will often consider some object stationary, which means that you
give them infinite mass. In those cases, there will be no effect of the force on the stationary
object.

The effect of these opposing forces also serve as an example of the second law, since they
have different mass and therefore will move at different speed from the same force.

This leads to our first demo (and our first beachballs), the demo "push". Like most of the
demos here, it is based on GLUGG (OpenGL Utilities for Geometry Generation) as well as
SimpleGUI, and is entirely procedural with no external models or other files. As such, I think
it both demonstrates Newton's third law but also the general setup for the demos. I hope you
will find them straight-forward and informative.

eoce Push

Two balls with different mass
Left ball:
—_——

Right ball:
—o————)
Impulse:

E\

"Push" two beachballs

In this demo, you can adjust the mass of each ball as well as the impulse, and get the effect
described above. According to the second law, the speed is affected by the impulse by divi-
sion by the mass, and the same impulse is applied to each ball.

This demo, as well as the arrow demo below, are pretty trivial, but they are just the begin-
ning. I promise more interesting demos following these.

The conservation laws
There are also the four fundamental constants, the conservation laws, in such a system:

> m; = constant
> E; = constant
> P; = constant
> L; = constant

In words, the mass, the energy, the momentum (P) and angular momentum (L) all stay the
same for a closed system. The last two are a consequence of the sums of force and torque
above. We may lose kinetic energy, but only by having it converted to heat or potential
energy.

3. Projectiles

Although we often have projectiles in games, I must say that our interest in the more detailed
simulations is limited. Most of the time, we just want the projectile to fly straight in very high
speed, i.e. a bullet, and the interesting thing is the collision. Not even gravity is significant for
this case. Gravity is more interesting for relatively slow moving projectiles like arrows, and
for such cases, wind and aerodynamic drag may have some interest. This makes Palnatoke
and the apple a good example. (If you didn't know, the story about Wilhelm Tell is a later ver-
sion of the same story. The viking version is older.)

Spin effects is often of limited interest, but there are exceptions. Golf simulations
(Palmer's favorite scenario, it seems [1]) is not my favorite case since the balls are small and
hard, so wind and spin effects are relatively small. It is important for a realistic golf simula-
tion, but not exciting as separate demos. However, I can imagine scenarios where you can
throw something like a beachball, which has very strong sensitivity to wind, so let us not rule
it out completely. The beachballs also tend to have distinct patterns which are good for
demonstrating rotations. Thus, let us use that beach ball as model and we will return to wind
and spin in a later section.

Thus, in the following, we have some different models for the examples, first arrows and,
for several cases, beach balls.

Arrows - only gravity

Gravity only is very simple. It is just a downwards force F = gm. So if this is the only con-
cern, Palnatoke need to aim higher in order not to hit his son. (Fortunately, Palnatoke was a
good shot and knew this, but... if you know the story, he pulled out rwo arrows. But the full
story is beside the point.)

The "Arrow" demo shows this, although the result is trivial: With gravity, the arrow
moves down. We can make this more formal by calculating the force and applying that, but in
the end, the mass will go in and out and we still simply accelerate by g. Air has very little ef-
fect on arrows. However, things get more interesting when we throw beach balls with air drag
and spin.

00 Arrow 1

Only gravituy, or without
=
Starting velocity: 0.3

|17,

Arrow

Beachballs with gravity and simple collisions with the floor
The integration and simple collision handling is very sensitive to operation order. Our demo
"Three beachballs 1" has only gravity, but each of three beach balls handles the acceleration
and collision slightly differently. The collision detection and handling here are very primitive,
just a matter of testing height and switching direction. We will return to that.

0@ Three beachballs 1

Only gravity, with variations

Three beachballs 1

The leftmost and rightmost balls add gravity to velocity, and then velocity to position, while
the middle one uses the reverse order.

The leftmost and middle balls will, upon collision with the ground, reverse direction and
move the ball up to 1 (the radius), while the rightmost ball only reverses direction.

The result differs substantially. The leftmost ball is stable while the middle gains energy
and the rightmost loses energy and will even sink through the ground after a while.

However, the stability of the leftmost is a coincidence. "Three beachballs 1a" is a varia-
tion of this. Here, the rightmost ball has the nice property of moving the ball up as much as it
went down into the floor. This makes it much better, but if you play around with the numbers
(for Beachball 1a it is the time step) you will see that it is fairly stable but not perfect.

This stands as an example of how small things affect even the simplest situation when we
deal with physics.

4. Collisions

Detecting and handling collisions are truly vital problems in games, and has therefore quite a
bit of attention in the course book [7]. There, we deal with a complete physical model with
torque, rotations, impulses and inertia. This is fine, but rather complex. In addition, some
simpler cases (primarily collisions between objects of same mass) are described in volume 1,
Polygons Feel No Pain [6]. This is very simplistic and I wish to fill in the gap a bit.

Here, we will discuss the fundamentals in some more detail, focusing on the 2D case for
simplicity. Hopefully, this can be a useful start for understanding the 3D case better.

Let us start with momentum, the conservation of momentum. For two objects not affected
by external forces, the sum of their momentums are constant before and after a collision:

vim,; + v,m, = constant
We can use this formula to solve collision problems.

Plastic collisions

Palnatoke shooting an apple from the head of his son is a classic scene that we can model as
an inelastic (plastic) collision. We know that the initial speed of the arrow is v1, while the ap-
ple is still. After the collision, they both have the same speed v2. The arrow has mass m1 and
the apple m2. This is a straight example of the conservation of momentum. The solution is as
follows:

vim; = Vz(m1+m2) ==V, = Vlml/(m1+m2)

This is demonstated in the demo "Arrow 2", where the arrow hits an apple (red spheroid)
and the velocity changes accordingly.

o0 e Arrow 2

Only gravity, or without
Starting velocity: 0.3
—_——
Apple mass: 10

i ————————
Arrow mass: 5

—_—

Arrow 2, plastic collision

Like with Arrow 1, the result is not remarkable, which is not strange since this is the easy
case that was trivial to derive. The point is that the change of velocity is based on the masses,
that is the formula above.

If you have two objects that are both moving, with intial speeds vy, and v,,, you get the
more general solution

Vi + Vopp = vamy + v, = v(my + my)
and we have a solution as
Va = (Vipy + Vopmp)/(my + my)

Thus, plastic collisions are simple to resolve. For elastic collisions, things are more hairy.

Elastic collisions
For elastic collisions, we add conservation of kinetic energy, the kinetic energy is constant

v,’m; + v,’m, = constant

Let us take two billiard balls as example, idealized to giving totally elastic collisions. We
only consider one-dimensional movement. As above we let them have the masses m; and m,
and the velocities before collision vy, and v,,. After collision, they will get the velocities v,
and va,.

Vipy t VapIy = Vi + VoIl
2 2. _ 2 2
Vipy My T Vo, My = Vi 'my + vy, 'my

These formulas has one trivial solution, no collision, so v, = v, and v, = v,,. The other
solution is found by realizing that

Vlb2m1 + V2b2m2 = V1a2m1 + V2a2m2
=
(Vlb2 - Vlaz)ml = (V2a2 - V2b2)m2 = (Vib - Via)(Vib T Vi)my = (V2a - Vop)(Vaa T Vo),
We now rephrase the first equation to
my(Vip - Vi) = (Vaa - Vap)m,
and combining these two we get
Vibt Via=Vaa + Vop = Via = Vo - Vip + Vi
or
Vib+ Via=Vaa F Vo = Vou = Vi - Vo + Vi

which makes the whole thing almost look too simple! From there, it is straight-forward to
eliminate v, and get v,,, and then get vy, in a similar way, and it will solve as:

using
Vipmy + VapMy = ViMmy + vo,my
eliminate either from above and get
(Vaa = Via T Vop)my + vopm, = vim, + vy,m,
Vipy + Vo, = vizmy + (Vig - Vo, + Vip)m,
=

Via= (Vip (M - mp) + 2v,,my)/(m; + my)
Voa = (2vip My + Vop(m, - my))/(m; + my)

This derivation was briefly hinted in Polygons Feel No Pain [6] but too brief to under-
stand. My fault, sorry.

This is demonstrated in the demo "Double bounce", where two beachballs collide, and I
am computing the collision response using the formulas above. The mass is the square of the
radius, which is correct for a beach ball.

-10 -

() () Double bounce

Starting height 1

Starting X velocitu 1

Starting Z velocituy 1

Starting height 2

Starting X velocity 2
Starting Z velocity 2 ‘

Radius 1

Radius 2

Double bounce

In the demo, you will notice that the balls bounce off each other very well, but they do not ro-
tate. We will, however, handle this too. See the rotation chapter ("kinematic rotation" and
"Double bounce 2") on how this is done.

Note that the case with equal mass, which I use in TSBKO07 [6], where the two objects
just exchange velocities, the formulas simplify greatly. The term with (m; - m,) disappears
and the other term includes 2v,,m,/(m; + m,) (similar for the second) which only leaves vy,.
After this, it comes out just like I say there:

Via= V2
V2a = Vip

To make the solution complete, we add a restitution parameter €, where 1 is elastic and 0 is
plastic. We use this to blend between the plastic and elastic collision formulas. To do this, we
just multiply the formulas above with ¢ for the elastic part and (1-¢) for the plastic part. This
will give us the final formula (adapted from Palmer [1], page 163):

Via= (Vip (M - €my) + (14+€)v;m,)/(my + my,)
Voo = ((1+€)viy my + voo(m, - €my))/(my + my,)

Try to set € to 0 or 1 and you will see that the expressions end up as the elastic and plastic
cases above!

-11 -

5. Rotations

Making objects rotate is certainly important. This is covered in the book, so we will here only
make a brief overview and see if we can dive into basic cases.

This will be done in several steps. First just plain rotation without physics. Then, rotations
with physics in 2D. Finally, we generalize to 3D.

Kinematic rotations: Rotation directly from collision
Here comes the simplest case: Faking the rotation by assigning rotation by the direction of
collision. No forces are involved, so this is pure kinematics.

If we want to make this more realistic, the ball should also lose speed in such a collision,
but for the demo "kinematic rotation", I skipped that effect, and made a beachball bouncing
around in a box with rotations.

©@0® Kinemat ic rotation
Starting height

Starting X velocity
Starting 2 velocity

Radius
—_—

¢

Kinematic rotation, with rotations without physics

I must admit that the rotation, in this case, is added with no consideration of At, it is just arbi-
trarily decided in order to show how I can get a pretty convincing effect with little effort.

In 2D, this is pretty easy, a rotation around Z. You store the angle and the rotation speed
as two scalars.

With full 3D rotations, it will be a bit more complicated. We model the current rotation
with a matrix and another that represents the differences to that, the rotation speed. In the fol-
lowing code, we use the variable rofmat for the current rotation, and diffrot to model the rota-
tion speed.

This is done by two steps:
Step 1: Every time the ball hits a surface, its rotation speed is set by the following code:

void SetRotation(vec3 v, vec3 n)
{
vec3 r = cross(v, n);
vec3 vn, Vp;
SplitVector(v, n, &vn, &vp);
diffrot = ArbRotate(r, -Norm(vp)/radius);

}

The vector n is the normal of the plane and v is the velocity of the ball. We split the ve-
locity vector in order to find the component that goes along the tangent of the surface (vp)
and set the rotation speed from that.

The rotation is then given directly by the norm of vp. The ball has the circumference of
radius*2m and the rotation speed will be the same as the norm of the velocity over the radius.

Step 2: Every frame, the rotation is updated by the rotation speed as:

-12-

rotmat = Mult(diffrot, rotmat);
or in C++

rotmat = diffrot * rotmat;

Note that the rotation speed, the change in rotation, is multiplied to the left, that is after
the current rotation.

I applied the same thing to the "Double bounce" demo above, which is now called "Dou-
ble bounce 2"

000 Double bounce
Starting height 1

Starting X velocity 1

Starting Z2 velocity 1

Starting height 2

Starting X velocity 2
Starting 2 velocity 2 ‘

Radius 1

Radius 2

Double bounce 2

There is little news in this demo, just improving the double bounce demo to something more
convincing. But it does look so good. If you want to improve this but still work with kinemat-
ics only (or mostly), you should consider slowing down the balls based on the difference at
the contact point, but then we quickly go closer to the kind of physics described in the course
book [7].

Simplified case, 2D

For rotations, a vital concept is the torque, which means how a force adds angular momentum

to an object. In 2D, the torque is a scalar. For a force vector F and a radius to the center of
mass 1, the resulting torque T is measured in Newton*meters, Nm . Then the torque is

T=rF

granted that the force is perpendicular to the direction towards the center of mass. If it is not,
the sin part of the cross product will affect it and it will become

T = rF sin(g)

How easy it is to rotate a body, that is how much it will rotate given a certain torque, is given
by the moment of inertia, J. In 2D, this is also a scalar, J. T will add to the angular momentum
L. Then the sequence comes out like this:

L=L+TAt
o=L/]
R=R+w®

Although the moment of inertia is a scalar in 2D, it depends on what point the object is rotat-
ing around. Palmer [1] lists some shapes and I added the last one:

-13-

« Solid sphere rotating around the center: 2/5-mr’

» Spherical shell of radius r rotating around center: 2/3-mr’

* Cylinder of radius r and length 1, rotating around an axis along the cylinder, centered:
1/2-mr

« Same cylinder, rotating along an axis across the middle of the cylinder: 1/12-ml* + 1/4-mr’

« Same cylinder, rotating along an axis across the end of the cylinder: 1/3-ml* + 1/4-mr*

These are illustrated in the following figure:

é 2/5- mr

Bowling ball (solid)

2
1/2-mr

!!

Cylinder

2 2
1/12-ml + 1/4-mr

Cylinder
2/3- mr
2 2
1/3‘ml + 1/4-mr

Beachball (shell) Cylinder

58

Inertia of some selected shapes

We will start with a special case, rotating a plank. This is similar to the case of rotating a rod,
a thin cylinder, with axis at the end. We assume that 1 >>r so the inertia is 1/12-ml°.

[JoX J The plank 1

THE PLANK
Starting velocity: 0.1

Starting position: 0.15

(Reset)

The plank

We take a snippet of code from the demo:

// Calc plankVelocity and omega

float £ = ballvelocity.z * ballMass;

plankvVelocity.z = £ / plankMass;

ballVelocity.z = -ballVelocity.z; // Really force backwards
// Plank center is at origin!

float t = -ballPosition.x * f; // torque, really r x f

-14 -

1 =1+ t; // really *At but this is an impulse

// Inertia for a thin rod/plank rotating around its center is

// 1/12+-m1"2

// The plank length is 2.5+2.5 = 5

float j = 1/12.0*plankMass*5%*5;

omega = 1 / j;
This is a very simple case. We update the velocity by the impulse from the ball, and then
torque - rotational momentum - rotation speed, using the inertia from the table above.

We have one more demo for this, the same plank but this time anchored by an axis.

[JoN] The plank 2

THE PLANK PART 2
Starting velocituy: 0.1
—_
Starting position: -0.15
—_——
Axis position: 0.15
—_———

(Reset)
(Start)

The plank 2

For this case, there will be no translation of the plank, while the intertia changes as the axis
moves. It is easy to calculate by using the special cases above. We split the plank into each
side of the axis like this:

float dl 2.5 - axisPosition;
float d2

float j = 1/3.0*plankMass*dl*dl + 1/3.0*plankMass*d2*d2;

2.5 + axisPosition;

Of course, the plank must rotate around its axis, which is the standard problem (rotation
around arbitrary axis) covered by my course book [6].

Rotations with physics in 3D

The book mainly covers the 3D case, which we will briefly summarize here. We will now
have to model both torque and rotations in 3D by vectors and matrices. For a force vector F
and a radius to the center of mass r, the resulting torque T is measured in Newton*meters,
Nm . Then the torque is

T=rxF

The moment of inertia is now a matrix, describing the behavior in different directions. The
inertia of any shape can be calculated by an integral over the shape, see [7].

The sequence is given in [7] but spread out a bit, so to clarify the sequence, it works like
this:

* Forces give torque by T=r x F
* Torque adds to angular momentum by L. = L + TAt

* Angular momentum maps to rotational speed by multiplication with inverse of inertia: L
=Jo=o=J'L

-15 -

« The change of rotation is then given as dR = @R, where R is the rotation matrix and "
is a matrix derived from (see [7]).

Another take at the "fake" rotations (preliminary)

With "kinematic rotation" as well as "double bounce", the balls hit floors and walls so often
that it looks very good even though they do not affect the rotation of each other. Our next
demo, "Many Beachballs", introduces a larger number of balls. This introduces a number of
new problems. Rotations would look wrong when the balls pile up on each other if they only
adapt rotations to the walls. Also, the balls tend to shake a lot. This problem remains, and
therefore I consider the demo preliminary.

0 e Beachball 6
Starting height

Starting X velocity

Starting Z velocity

Number of balls
—_——
(Rese®)

Many beachballs (preliminary)

However, the first problem, making the ball rotations match when they collide, is solved, in a
rather unusual fashion as far as I know. When two balls collide, I convert their rotation speed
matrices to vectors (a vec3 which defines the rotation direction as well as, in its magnitude,
the angle), take the difference between them, divide by two, and then assign them to new ro-
tation speeds.

vec3 rl = MatrixToVec3(ball[i].diffrot);

vec3 r2 = MatrixToVec3(ball[j].diffrot);

vec3 rr = ScalarMult(VectorSub(rl, r2), 0.5);

ball[i].diffrot = Vec3ToMatrix(rr);

ball[j].diffrot = InvertMat4(Vec3ToMatrix(rr));

The functions for converting from a rotation matrix to the vec3 rotation look like this:
vec3 MatrixToVec3(mat4 m)
{
float a = m.m[9] - m.m[6];
float b = m.m[4] - m.m[1];
float ¢ = m.m[2] - m.m[8];
float angle = acos((m.m[0] + m.m[5] + m.m[10] - 1)/2);
if (isnan(angle))
return(Setvec3(0,0,0));
float root = sqrt(a*atc*c+b*b);
if (root < 0.001)
return(Setvec3(0,0,0));
vec3 r;

r.Xx = a/root;

-16 -

r.y = c/root;

b/root;

]
N
I

return ScalarMult(r, angle);

}

There are two "if" statements to handle singularities that would create nan (not a number)
result. Going from vector to matrix is just a variant of the usual rotation around arbitrary axis:

'

mat4 Vec3ToMatrix(vec3 r)

{

return ArbRotate(r, Norm(r));

}

I consider this an experimental solution since it is not a method I have seen elsewhere. Others
would tell me to use quaternions, and that would work, but... I just had to try this variant.

I based my "MatrixToVec" code on a code example found online, the site "Euclidean
Space" [9].

There is a variant of this demo called "Many Beachballs Bad". In that demo, the rotations
of the balls are not affected between the balls, which lets them rotate in strange ways when
they are piled on top of each other. This is what the "not bad" version corrects.

If you want physically correct rotations, see the rigid body physics chapter in the
TSBKO3 book [7]. A big topic there is how to handle rigid objects of arbitrary (generally con-
vex) shape, including collisions causing rotation.

Rotations based on particles

However, there is another way to deal with rotations that can be much easier, and that is to
use a system based on particles connected by springs or, similarily, connected by constraints,
also in TSBKO3 but let us elaborate on the concept a bit. This is based on connected point
masses. Consider handling movements of a car by putting one point mass at each wheel.
When these point masses are pushed around, make the body of the car follow them, while the
springs will make the point masses strive to get closer to the rectangular shape that they are
organized in.

And then the formulas in this section will be what you need to handle collisions, includ-
ing elastic and plastic as well as varying mass, and your object can even rotate. See the sec-
tion on springs. In the demo there, you have a object that will rotate spontaneously.

-17 -

6. Friction

Friction is described in the book but included here for completeness, with some extra infor-
mation and demos.

When an object is on contact with another, movement along the objects will be subject to
friction. Let us consider the case with one object sitting on the ground, a plane with infinite
mass. As long as the object is not moving, the friction force F; is the same as the forces ap-
plied to the object along the plane, up to a maximum. This maximum is the force along the
normal to the plane, F,, times the friction coefficient p,, where s stands for static.

Ff = “an

Once the objects are in motion, the friction will be another, somewhat smaller force. This is
modelled with the kinetic friction coefficient p,:

Fi= Han

The opposite is true when objects are sliding along each other. The friction force will then act
to reduce the movement, until they come to rest.

The dynamic friction coefficient is usually (even always) smaller than the static one.
Some examples from Sergyi's lecture material include:

Material U Ui

Steel on steel 0.7-0.74 0.57-0.6
Steel on steel, lubricated 0.12 0.07
Cast iron on cast iron 1.1 0.15
Rubber-concrete 1.0 0.8
Ice-ice 0.1 0.03

The friction coefficient is usually between 0 and 1, but it is notable that this is not the case for
all materials. For some materials, it can be larger than 1! One personal (not scientific) exam-
ple (anecdote) that is not in the table is a car model with rubber wheels against a desk at Kat-
edralskolan, which I personally measured to about 1.1 when my high school teacher claimed
that it could not be over 1.

This is the physical description of friction. However, this gives us a practical problem due
to the discrete time. If the force is too large to make the object come to rest, it will overshoot
and cause movement in the opposite direction! If this happens, the object will move back and
forth with small movements, and most likely one is larger than the other and the object will
start crawling in an arbitrary direction.

We have a demo for this, the "sliding block" demo. Here, a cube is given a velocity, and it
is also given a friction force opposed to its movement. This means that the cube will deceler-
ate towards zero, and then it should stop, ideally. However, it does not!

For different initial velocities, the cube will, after the initial movement is reduced to zero,
start sliding right or left, randomly. However, if you add a check for the velocity crossing
zero, the problem is eliminated. Another option is to reduce the friction at low velocities so
the resulting force is always smaller than what would cause a velocity in the other direction.

-18 -

eoe Bad and good friction

Friction

—_——
Starting velocitu: 0.916667
Current velocitu: 0

X Zero crossing check

The sliding block demo

This is only a small example, where we know that there are no other forces involved. You can
easily consider more complicated situations, like sliding uphill, where the velocity may or
may not switch direction and that this is perfectly correct.

I have a preliminary demo for a block on a slope, but this is preliminary since I don't
think it is doing everything right yet.

eo0e Bad and good friction

Friction example
—_——
Starting velocity: 0.4
Current velocity: 0.0104133
s

Slope: 0.106356
[2Zero crossing check
[Low speed check

Sliding block 2 (preliminary)

When considering friction, collisions and rotations are affected. One example of this is the
golf ball case, a case that Palmer [1] uses extensively is his demos. See the following figure:

Golf ball physics

In this figure, the force f is split to two composants, one along the normal, f,, which will be
applied to the ball as in the collisions section, while the one along the tangent, f;, will affect
both rotation and translation depending in the friction. The movement will also be affected by
aerodynamic drag, which is detailed further in Palmer's examples [1]. However, spin and drag
give stronger effects on beachballs, my choice.

-19 -

7. Springs

Springs are also covered in the book [7]. It basically says that the force is proportional to the
distance to the resting position of the spring, Hooke's law:

F = -kAx

where k is the stiffness of the spring and x is the offset from the resting position. There may
also be a dampening force. See the book [7].

It is possible to express the movement of a spring as a differential equation and solve it
analytically. This, however, has no purpose in a game or procedural animation situation.
Rather, we will, again, calculate and apply the force at discrete time intervals.

This requires us to use some integration method that will neither add or remove energy
when we do not desire that but create a stable animation. Euler integration tends to go very
wrong while Verlet integration often is all we need. However, with proper dampening, Euler
can work pretty well.

I have a demo for this, a simple 2D demo with the name "Sproing". In this demo, I have
made a 2D array of particles, represented by beachballs (of course!), connected by a set of
springs, in 8 directions from each particle. I chose to make no springs to the layer two steps
away, although that is often used. Still, my system is fairly stable. It has sliders for the spring
stiffness as well as dampening, and you can try running the system with only 4 or 6 springs
per node and see what happens.

Sproing, a 2D spring system

There is also a 3D version of this system, called Sproing 3D:

o0 e Sproing 3D

Sproing 3D

-920 -

Like the 2D version, the particles only connect to the closest layer, in this case 26 vertices.
Springs in yet another step are often recommended, but as you can see, a single step works up
to a limit. The system is pretty stable.

In 3D, we can clearly see that the number of springs grows rapidly. I make no attempt to
accelerate this on the GPU, but for a large system it is clearly advisable. See section 5.6 in the
course book [7], "Processing particle systems by multi-pass shaders".

The demo is easily configurable in the source. It is also possible to show the surface as
polygons instead of the particles. See the screen shot below.

o0 e Sproing 3D

(Kick)

Sproing3D displaying the shell instead of the particles.

The system is quite stable even with Euler integration, but if you turn off dampening, you
will see a big difference in stability. Also, a high spring constant will cause the system to ex-
plode very quickly.

Yet another variation of this is to simulate cloth. For this, we are back to the 2D system
above, but we anchor the top row of particles, so the rest are hanging below it. We have yet
another demo for this, "Sproing Cloth". Here, I start with the system raised above the an-
chored row, so it falls down from these. As always, there is some randomness from the start
so it has a chance to deform nicely, which I think it does.

o0 e Sproing Cloth

Sproing Cloth

What is the relevance of this for games? I think it is highly useful for many effects, not least
visual, like clothes. It is also useful for special scenes that make a point in soft bodies, which
can be part of the mechanics. Then, we get to the case with collision detection of these soft
bodies.

-21 -

8. Wind effects

This section will discuss wind effects, aerodynamic drag, spin and more. Many of these ef-
fects are of limited importance, but I hope we will find some cases that can be of interest.
One of the most interesting ones are left to part 10, sailing.

Aerodynamic drag - dropping large things
If you drop something that is large compared to its weight, the aerodynamic force will be
important.

The drag force works like this:
Fd = CdApV2/2

where F, is the resulting force, C, is the drag coefficient, which depends on the shape, A is the
area of the object facing the wind, p is the density of the fluid/gas and V is the velocity of the
object relative to the wind.

Sergyi has a table of examples (see also below, under "Laminar & turbulent flow"), but to
summarize, the drag coefficient is about 1.1 for objects with a flat surface facing the drag,
around 0.5 for round objects and can be as high as 1.4 for a concave object.

The density p for air is, comfortably, around 1.0 kg/m’. It varies from 1.225 at the ground
to 0.9 at high altitudes, according to Palmer [1]. It should be noted that the density, and there-
by the drag (hydrodynamic drag) is several orders of magnitude higher. According to Palmer
[1] fresh water has a density of 1000 kg/m’ while seawater has 1025-1030 1000 kg/m’. This
drag is part of the sailing simulation part below, where it is significantly different in different
directions due to the shape of the hull. More about that later.

These exact numbers are not necessarily of much interest to us, as long as the effect is
good. What matters to us most is the fact that the drag varies linearly with area and by the
square of the relative velocity.

I repeat: Drag is linearly proportional to the area and proportional to the square of the rel-
ative velocity!

In the case of the arrow, the area is very small and therefore the drag is very small com-
pared to its momentum. So let us turn to bigger objects.

"Three beachballs 2" shows the beachball example but with drag on two of the balls, and
higher mass on the right:

eo0ce Three beachballs 2

Three beachballs 2

As expected, the middle one slows down fast, the right one slower.

-22 -

What happens, physically, is that this: The gravity causes a force f = m*g, the drag force
is added to that, f = m*g + f;, and then the acceleration is a = f/m, so the drag is divided by
the mass.

In code, the drag can be calculated like this:

float fd = Cd*areal*1l*v2.y*v2.y/2; // drag Fd = Cd-A-ro-V2/2, A = r2*M PI, Cd
=0.1, ro =1

float £fg2;
if (v2.y > 0) £fd = -fd; // Must be against the movement
fg2 = -g*mass + fd;

Let us look at the mouse and elephant example.

We give the elephant the radius r. and the mouse r,, where r. >> r,,. This gives the ele-
phant a mass of m, = k,r.” and an area of a, = k,r.”. Similarly for the mouse, producing mass
m,, and area r,,.

When both start falling, they have no velocity and get the acceleration g, which means a
downward force of m.g for the elephant and m,,g for the mouse. Both will momentarily start
falling with the same velocity.

But then they both gain velocity, and the drag becomes Fy = C4-A-p-V?/2. The drag is pro-
portional to the square of the radius while the gravity force is proportional to the cube of the
radius. The higher mass will cause a higher force to overcome the drag and the elephant will
fall faster.

We can solve this problem with analytical integration, but that is not how you get the ef-
fect in a game situation. So let us do it numerically, by iterations! This I call bowlingballs,
with a large and a small bowling ball (representing the elephant and the mouse). Unlike beach
balls, I consider them to be solid. They also get extremely large drag so we get some time to
spot the difference.

eoe Bowling balls

Different size and mass, high draa

Bowling balls

And, for these bowling balls, the elephant does indeed fall faster. The integration is like
"Three beachballs 2", but with different mass and area.

But let's also complete the formulas. We have a lot of constants that we lump together to
simplify things.

ke=Cy'p/2=Fy=kyA-V?
but the area is proportional to the square of the radius, so then we can do
A=kr
Kaa = Kok,
and get

-23-

Fq = Kot>* V?
The mass is porportional to the cube of the radius so:
m =k, r’
F,=m'g=k,r'g
Fiota = max(F, - Fy, 0)
which gives us the acceleration
a = F/m = max(F, - Fy, 0)/(knr”) = max(knr'g - ko™ V>, 0)/(kpr”)
Simplify again with k.4, = k./k, and we get
a= max(g - Kym' V1, 0)

In the end, these formulas end up to a linear function of 1/r, and it should be clear that a
small radius will, for objects that are otherwise similar, will get a bigger impact from drag
than the larger one. Thus, the larger object will fall faster, and reach its final velocity later,
when F, and F, balance and no more acceleration occurs.

We may initially assume that the objects are relatively large, but we can see that we could
make the case of a mouse and an ant and the ant falls slower. You know the old saying, the
bigger they are, the heavier they fall, and that is correct - with same density and when aerody-
namic drag is considered.

)

Yes, the elephant will fall faster!

That was for similar objects, but of course we can vary other parameters. How about beach
balls; what would happen if we do this with beach balls of different size? Since it is a thin
shell, both drag and mass are proportional to the square of the radius so they would fall at the
same speed!

Spin effect - throwing that beach ball

Spin is important in golf, table tennis and other sports dealing with balls. The effect is per-
haps most central to table tennis, where spin is used and varied for every single shot, and you
can put very strong spin on the ball due to the rubber coating of the racket. For demonstra-
tions, our favorite case, the beach ball, fits just fine.

The effect of spin will push the object up or down. This is called the Magnus force. We
take the equation from Palmer[1], page 124:

FM = OS*CL szA

where C, is the shape dependent lift coefficient, p is the fluid (air) density, A is the area
and v is the velocity magnitude.

C. includes the rotational speed. For a sphere this is

CL=ro/v

-24 -

where r is the radius, o is the rotational speed and v is again, the velocity magnitude which is
thereby turned into a linear dependency.

And this will tell us what we need: The Magnus effect is proportional to the velocity, per-
pendicular to the velocity and the spin axis, and for most cases we can set the other values
more or less arbitrary to get the effect we want. And then I get the "hack" version of the Mag-
nus force:

Fu = kov

where k is a constant that approximates the air density, area and shape dependency. I may
set k to whatever fits my purpose!

Finally, most importantly, backspin will lift the ball, forward spin will push the ball down.

And we have a demo for this, the "Magnus" demo:

0@ Magnus force
Starting height 1

Starting X velocity 1
—_——
Starting rotation

i=——————
.

Magnus force demo

This demo, of course, exaggerates the effect quite a bit, but the effect should be clear, higher
velocity and higher spin will create more force.

This asssumed that the spin is around the z axis. A more general expression is
Fu=k(oxvVv)

where @ is the rotation vector and v the velocity vector. With this expression, we can
make spins that causes sideway forces.

Laminar & turbulent flow

But a beach ball would not fall straight down, you say. It will wobble around in the air. This
is due to wind and turbulence.

Laminar flow is the straight wind that we described in the above. Turbulence will affect
the C4 parameter. It typically gets lower in turbulence. Palmer [1] lists the following cases:

Laminar and Turbulent Drag Coefficients

Shape Laminar C, Turbulent Cq4
Sphere 0.4-0.47 0.2

2:1 Ellipsoid 0.27 0.13

Circular cylinder 1.2 0.3

2:1 Elliptical cylinder 0.6 0.2

Palmer states that this is "all you need to know about turbulence" but without saying when to
use this knowledge. Possibly we can apply it by making the force different indoor and out-
doors? I would suggest that we could also may try to model the turbulence, how it changes

-25-

the forces. However, I must argue that this kind of simulations are a bit out of scope for our
topic. We can probably model it with randomness.

However, if you want a more physical model, you can use models like the Navier-Stokes.
Wikipedia lists a number of alternatives. [11]

Aeroplanes

Aeroplanes pose more than one additional concept. They are also quite interesting from a
game perspective, and realistic physics can be very important, both for pure flight simulators
as well as dogfight games.

The primary topic here is the lifting power from the wings. It is proportional to the veloci-
ty and directed along the plane's up-vector. Do we need to know more? It depends on how ac-
curate simulation we want.

There another issue with aeroplanes, relevant for propeller planes, is the gyro effect from
the propeller. The rotation of the propeller affects how fast they can turn, differently for dif-
ferent directions.

TO DO: Cases above in some detail, especially the gyro effect of the propeller.

A third issue is the one of turbulence. Here, I would argue that some randomness to ve-
locity, lift and rotation will do it.

So, for these issues I argue that we can do most of the effects without precise physics, but
there are some cases where we want to enhance the detail.

Wind effect on objects - Buster Keaton or confetti

Do you remember that amazing scene with Buster Keaton in a town being torn down by a
hurricane, from "Steamboat Bill Jr.", 19287 This scene is of interest for us since it shows the
effect of extreme wind. That is indeed a case that could make a game-like situation. Imagine
a game with a storm scene like that! (And Keaton did it for real!)

So how do you model this? You need wind force, collision detection, rules for when parts
are torn off, and objects certainly should rotate and move due to wind and turbulence.

Some parts may just fall down onto the ground, others can be torn off and fly away. I can
only draft this interesting scenario.

An object flying in the air, most likely flat panels for this scenario, will be affected by a
force caused by the difference between its velocity and the wind velocity times the area that
the object has seen from the direction of the wind. Thus, the wind effect will be proportional
to the dot product of the normal vector of the panel and the wind direction. It will also get a
force upwards, lifting or pushing down. Given a significant rotation, the panel will move up
and down in the air.

The effect is similar to that in a sail, see the sailing ship section. A different case when
this is relevant is for simulating confetti flying in the air.

In our model, we assume k is constant and we just care about the area seen from the wind
direction. It is really dependent on the objct shape, the C4 parameter above, which can vary
with direction.

The wind v,, + v, (wind plus movement) multiplied by the area a and the shape constant k
gives a force F,, which is then projected to F,, normal to the panel which will then lift or
push down the panel as well as moving along the wind direction.

- 26 -

<
fw = (v + Vg)-ak

Wind on panel

This is demonstrated by the demo "Wind" where a rotating panel is affected by wind. See the
screenshot below. In that demo, a single panel is rotating in wind, which will make it move
with some variation caused by the orientation of the panel.

o0 e Wind

WIND
Starting rotation: 1

Starting rotation speed: 0.035%292
—_—

Wind demo

For the town case, this is quite suitable for things like loosened panels from rooftops. Another
case for the town being torn down is objects that are partially archored. Such an object will
rotate around its anchor point, potentially coming loose with a significant rotation. A suitable
model is to accumulate the force, the tear on the anchor, so it will break after some time.

Now, let's also do the Buster Keaton falling wall:

As above, splitting vector into composants is the key, but now we also have a fixed axis,
the contact point of the wall to the ground. So the situation is similar to "The plank", with
forces creating rotation.

In the figure below, we have a wall with height h and wind creating a force F,, when hit-
ting the plank perpendicularly (depending on the area, but the area is constant so we bake that
into F,,). This causes a torque of h/2 * F,,.

When the wall falls due to this torque, it rotated to an angle ¢ and F,, gets reduced by cos

@, but we also get torque from the gravity, F, = mg, projected to the normal of the wall,
which then is F, * sin ¢.

For this case, the wall speed v; is limited but not zero. I choose to ignore it here.

-27-

Angle 0
Angle ¢ =4

Fy*cos®
P h
Fu Fu
Fg*sing
~—e A
T=rF=h/2*Fw T=rF=h/2*(Fg*sin ¢ + Fw * cos ¢)
The falling wall

But we are not done yet. The forces above also have a composant along the tangent of the
wall, which creates a force against the contact point with the ground. If F,, is small, this force
will simply get an opposing force from the ground and cancel out, but if F,, is large enough,
we can consider a breaking point when it comes loose and we move to the loose panel above!

- 28 -

9. Simulating sailing ships

Above, we considered the wind effect on projectiles. However, a truly interesting case for
wind is sailing ships. We have seen several games where this is important, like the old game
"Sid Meier's Pirates!" and many others.

If you have been sailing, many of these effects are well known to you, but can you simu-
late them in a realistic fashion?

In my opinion, a decent iterative simulation of sailing is much more interesting than mod-
elling how a boat moves up and down (although that can be valuable for hard-coding a realis-
tic movement), since the sailing physics is something that the player can control and master
with a visible effect. Therefore, you can build a whole game around that.

I have no ambition to make a perfect simulation of sailing, but to cover the most funda-
mental issues that are enough for our purposes: Direction of wind, sail and ship, the three
most typical sailing situations, and some dependency of the slant of the ship, which affects
the effective area of the sail. Finally, the water drag is an important component, more impor-
tant that you may think at first, because it will reduce sideways movement. You can go much
further with more detail (hinted in the picture below), but that has no place in fundamental
game physics.

There are still a couple of parameters to adjust. How much dragforce will velocity cause,
how much force will the sail produce from the wind, how heavy is the boat? All these are pa-
rameters that are really physical parameters that you need to adjust to match the desired
effect.

Much of the modelling is made by splitting vectors along another vector. There are multi-
ple cases for that operation. You split a vector into one component parallel to the given direc-
tion vector, and one perpendicular. This will operate on the boat direction, boat velocity, wind
direction and the direction of the sail.

(Relatively) detailed small boat with curved sail, rudder, and people.

You may notice that the people in the boat are dressed in orange. This represents [life jackets!
This is not important for a simulation but only a good thing to include as a good example. So
please put life jackets on your simulated sailors!

The sail effects is based on the relative (apparent) wind direction, which is the difference
between the actual wind v,, and the velocity of the ship v,. So, v, = v, - v;. On to of that, we
have the drag from the water, which creates a backwards force, assuming that there is no flow
in the water. In the following, we assume that there is no flow, the water is still.

We assume (not at all correctly) that the sail is planar and friction free which gives us a
simpler model like in the figure below. The wind against the sail will then only cause a force
perpendicular to the sail. We can model this force with the aerodynamic drag formula, which
means that the force is proportional to the area.

- 929 -

Our boat model: Planar sail

There are three main cases that I want to cover, to scud, sailing downwind, sailing with the
wind (swedish: 14dns), beating/tacking, sail almost against the wind (swedish: kryssa), and to
sail with the wind from the side, sidewind (swedish: halvvind, sidvind).

Downwind is the easiest case. We just take the apparent wind and make that create a
force due to aerodynamic drag.

—>
> fy from vy
Vw
— > «— <+
Va Vg fdrag drag from vg

Downwind, force from apparent wind minus drag

Drag from the water is important here. The keel is designed to keep the drag low from the
front, to make the boat move fast forward, but high sideways. So, in order to calculate the
proper drag, you need to split the boat velocity (relative the water, if that moves) and split it
along the direction of the boat. The sideways component should then be multiplied by a small
factor (see the section on aerodynamic drag above), and the component along the boat with a
higher, different for forward movement and backwards.

But we can also decide to simplify the model even more and eliminate the sideways drag
as well as the drift (consider the sideways drag infinite = no drift) and decide that the boat
goes straight forward no matter what. This is a simple model that will eliminate several com-
ponents of the model. Is it good enough? You have to decide that.

-—

Vs low drag from vt

Vss
l high drag from vgg

Vst

Direction dependecy of drag effect from water

Sidewind works like this: The sail is always at an angle out from the boat, somewhere around
n/4 (45°). The effect from the wind can now be split into to parts, one along the sail and one
perpenducular to the sail. The one along the sail will not affect the boat since the sail is fric-
tion free. The perpendicular one will create the force f,. This force now be split into two
composants, one along the boat and one perpendicular to the boat. The one along the boat wll
drive it forward, opposed by the drag form the water. The perpendicular one will push the

-30 -

boat sideways, which causes drift (swedish: avdrift), but as mentioned above, the keel of the
boat is designed to give a higher drag force in that direction and limit the drift.
farift part of f, that causes drift

fw from perpendicular part of v,

frw part of fw that drives the boat forward

vy actual wind direction
-

V.
farag drag from v a

Va = Vy + Vs resulting wind relative boat

Sidewind

Beating, which means sailing against the wind, is the most interesting case and where the
sailor really needs to find the optimum. It works exactly like the sidewind case, only with a
steeper angle.

farift part of f, that causes drift

fw from perpendicular part of v,

frw part of f,, that drives the board forward

-Vg

Vw
Va

Beating

So, the total system for this simplified case consists of a force from apparent wind that drives
the boat, another part from apparend wind that causes drift (but limited by the keel), and one
drag force from the water.

All in all, in a game, you need the player to steer the boat and control the angle of the sail.
From there, you can calculate the forces to see how much (and if) the boat moves forward.

Controlling the sail

Most of the time, you don't set the angle of the sail explicitly. You rather pull in the sail more
or less, and the resulting angle always push the sail downwind. You rarely want to force the
sail upwind since that would push the boat backwards!

There is, however, an exception to this, and that is a trick to turn the boat quickly. When
you have two sails, a mainsail and a foresail, reversing the forsail can get that effect, and is
useful when you fail to turn to swich side when beating. If you lose too much speed, your
turn may fail, the boat is still, you have no steering speed, but then you can steer with the
foresail, get the wind back in the sail and you are back in the race!

-31-

This is now suggested as yet another possible feature for sail racing. However, from a
gaming point of view, controlling both the mainsail and the foresail this way might be more
controls than the gamer can handle. This is, obvioulsy, a design and user interface question.

force from foresail that
causes the boat to turn

=

Steering with the foresail

Additional issues
I would like to mention two more things that I find relevant, tilt/hiking and jibing.

The more f; the boat gets, the more it tends to tilt. This reduces the effective area of the
sail, pretty well approximated by the cosine of the angle. Because of this, sailors often lean
on the side of the boat or even hang on the side in order to compensate (as in the figure be-
low). I think this is called "hiking" (swedish: "burkning"). So, we don't hang on the side only
in order to keep the boat from capsizing, but also for keeping the speed up!

Trying hard to keep the sail effective

Yet another game relevant issue is the dangers of downwind! When you sail in downwind, the
sail may switch side. This is AFAIK called jibing (swedish: "gippa"). This can happen very
quickly and may be pretty dangerous, since the boom moves very fast across the boat and
may knock people overboard or hurt them. That is usually considered a problem, but in a
game, dangers are only part of the fun!

And of course I have a demo of this. "Boat 1" gives you a simplified model, with flat,
friction free sail. The boat is centered on the screen but a number of orange balls represents
the movement. The wind comes from the left. You can manipulate the sail direction as well as
the boat direction. The demo models the mapping of the wind towards the sail, splitting wind
direction towards the sail and then the sail effect towards the boat direction. Drag and drift
are included but are small.

-32-

[JoX J The boat 1

Boat 1

There are many modifications that can be made. There are no islands, no opponents, and
no jibing or tilt. Furthermore, the sail direction and boat direction are set directly. In reality,
as mentioned above, the direction of the sail is always downwind, and the boat direction can
only be changed by the rudder, which makes turn in low speed hard or even impossible.

All in all, simulating sailing boats may be both easier and harder than you first think.
Much of the problem is solved by projecting vectors on each other, splitting vectors, but there
are a lot of issues that you may or may not want to include in your model.

10. Waves

When talking about boats, waves is a special part of the problem that needs to be handled
separately.

Moving water, including waves, is a very diverse subject with many methods, with many
different choices depending on situation and ambition level. These were covered only briefly
in the book [7]. These methods include:

* Kinematic methods, model waves programatically. This includes modelling from harmonic
functions but also, as a much more realistic extension to the former, Gerstner waves.
* Heightfield approach, modelling water movement as exchange of matter from cell to cell,
which essentially means between pillars of water.
* Particle systems.
* Field-based models, volumetric and grid models using fields of velocities and more.

Out of these, we will primarily cover Gerstner waves, as being a relatively easy but still
nice looking solution.

Surface waves

Sometimes it is enough to get the visual impression of waves without changing the actual
geometry. We will here mention two approaches:

* Bump mapping

» Scrolling textures with displacement

-33-

Bump mapping for waves is a matter of modelling the normal vectors of the waves but
not changing the geometry. The bump mapping technique is covered in SHWMTS [7] but the
next problem is how to model the variations.

Scrolling textures is an interesting trick to simulate the refraction of the water and thereby
giving an impression of waves in a very simple way. This is based on using a texture that is
used as offset for another texture, displacing where the texture lookup is made, and scrolling
this texture over the other. I have an older demo for this.

Gerstner waves

Trochoidal waves or Gerstner waves, named after Franz Josef Gerstner [12], is a popular
model that produces pretty good waves with pure kinematics. It can be derived from a mathe-
matical model of waves, from the Euler equations, but in practice it can be modelled kinemat-
ically with rotating circles, which makes it easy to implement. What you do is to take points
on a surface and offset them by a point on a circle, and the point on the circle should vary

over the surface. See the figure below.
L J
[J L J ¢
1,1/. o o °* y ° ° o ./ hd i

Geometric effect of Gerstner waves.

It is possible to put much detail in the components of the wave, but a simplifed form can
look like this:
vec3 p = in Position;
p.y += sin(time + p.x)*amp;
p.X += cos(time + p.x)*amp;

gl Position = projectionMatrix * modelviewMatrix * vec4(p, 1.0);

This is straight from my vertex shader, and the geometry is a tesselated plane. I only
made the amplitude configurable here. Scaling time would also be desirable and simple. Then
we get this more general formula:

vec3 p = in Position;
p.y += sin(speed * time + wavenumber * p.x)*amp;
p.x += cos(speed * time + wavenumber * p.x)*amp;

gl Position = projectionMatrix * modelviewMatrix * vec4(p, 1.0);

This will produce a simple but pretty convicing wave if the parameters are within reason-
able bounds. When you experiment with this, you will easily find cases where the wave dete-
riorates and self-intersects. You need to avoid these.

I have made a simple demo using the formula above. See the screen shot below. It only
has diffuse light, but specular light is obviously desirable.

Beyond this, you can add some noise, ripples, random variations, multiple waves, but the
Gerstner wave model is a good foundation to build from.

-34-

e0e Gerstner waves

- = ==

Simple Gerstner wave in a 3D scene

An obvious limitation of Gerstner waves is that the model does not support interaction
with external forces. It is just a model of how the waves move as an independent system.
Models that handle such interactions include particle systems like SPH (see below) and field-
based models based on models like Navier-Stokes' equations.

Smoothed Particle Hydrodynamics

When discussing waves and water, I find smoothed particle hydrodynamics (SPH) quite rele-
vant. SPH is based on a particle system with dependecies between the particles. An important
feature is that the influence from one particle to another is based on a density field around
each particle, which is smoothly decreasing with distance. Thus the "smoothed" in the name.

This makes the basic algorithm rather simple:
for each particle
find all particles within a distance D
accumulate the density contribution from the particle

also calculate the gradient

Now all particles have a total, so
for each particle

from the total, calculate a force on the particle

This means that, unlike the beach balls, we don't have a binary hit/no hit situation but a
declining repelling force varying by distance.

This algorithm has been very successful in modelling water, as well as other materials.

For large systems, "find all particles" is not reasonable, but you have to make some kind
of spatial ordering in order to accelerate it. If all particles are of similar size, ordering them
using a grid is a good choice. This is sometimes referred to as "spatial hashing".

--to do--

-- picture, demo, more detail --

-35 -

Conclusions

What you have here is a compact summary of the topics I find most relevant for the TSBKO03
course, and the subject in general. I hope that this fills the gap between the old high school
physics and the advanced physics described in the TSBKO03 book. My ambition has been to
put much of Sergyi's material in (digital) print, while doing my best to make it even more rel-
evant to the game physics subject. I also take the liberty of including some non-physical
shortcuts that are useful for pseudo-physical effects. This includes the numerous new demos
that I hope are useful and enlightning. My plan is to upload them all to my demo archive
[10].

References

[1] Grant Palmer, "Physics for Game Programmers", APress 2005

[2] David M. Bourg, "Physics for game developers", O'Reilly Media 2002, 2nd ed 2013
[3] Rick Parent, "Computer Animation", Morgan Kaufman 2008

[4] David H. Eberly, "Game physics", Focal Press US 2010

[5] David Baraff, "Physically based modelling", SIGGRAPH 1999, especially parts on rigid
body dynamics, https://graphics.stanford.edu » papers » phys_model, retrieved 2022-10-15.

[6] Ingemar Ragnemalm, "Polygons feel no pain".
[7] Ingemar Ragnemalm, "So how can we make them scream".

[8] Sergiy Valyukh, TSBKO3 lecture slides for lecture 7-9. https://computer-graphics.se/
TSBKO03/

[9] Matrix to angle code, EuclideanSpace. https://www.euclideanspace.com/maths/geometry/
rotations/conversions/matrix ToAngle/ retrieved 2023-03-16.

[10] The Polygons Feel No Pain demo archive. https://computer-graphics.se/demopage/

[11] Wikipedia on turbulence modelling, https://en.wikipedia.org/wiki/Turbulence modeling
retrieved 2023-03-22.

[12] Gerstner, F.J. (1802), "Theorie der Wellen", Abhandlunger der Koniglichen Béhmischen
Geselschaft der Wissenschaften, Prague. Reprinted in: Annalen der Physik 32(8), pp. 412—
445, 18009.

-36 -

