
Open GL ES

Introduction 1/19

 3D graphics for embedded systems
 Smart phones
 Pads
 Portable Multimedia Systems
 Gaming consoles (both portable and stationary)
 Settop boxes

 Motivation
 Mobile gaming (iOS, Android) fast growing market
 Portable gaming consoles (Nintendo 3DS, Playstation Vita)
 Also: stationary consoles (Ouya)

Introduction 2/19

 Example architectures
 Imagination Technologies PowerVR (market leader)
 ARM Mali
 Qualcomm Adreno (former: by ATI)
 NVIDIA Tegra (caution: no unified architecture!)

 Two flavors
 OpenGL ES 1.x: fixed pipeline
 OpenGL ES 2.0/3.0: shaders
 Not compatible with each other!

Introduction 3/19

 OpenGL ES 1.x
 Android since 1.6
 iOS
 Nintendo 3DS
 Playstation 3 (supports parts from Open GL ES 2.0 as well)

 OpenGL ES 2.0
 iOs (since Iphone 3GS)
 Android (since 2.0)
 Playstation Vita
 Chosen as basis for WebGL

Examples 4/19

Left: screenshot from Horn, right: screenshot from Riptide

Why OpenGL ES? 5/19

 Many of these systems support “normal” OpenGL as
well, but...
 Not all of them
 OpenGL ES designed with embedded systems in mind

=> reaches higher performance

 The only reason to use “normal” OpenGL is when you
need a feature not included in OpenGL ES
 But beware: there is probably a good reason why it is absent

Embedded systems 6/19

 Low performance (compared to PC)
 Cost
 Runtime (note that battery technique hasn't improved much in

recent years
 No active cooling! (Otherwise too big)

 High Resolution
 iPad(4): 2048x1536
 Nexus 10: 2569x1600

=> Specialized solution needed!

Embedded systems 7/19

Found in: iPhone (since version 4), iPad (since version 2), Nexus
S, Samsung Galaxy S, Samsung Galaxy Tab, Sony Ericsson
Vivaz, Nokia N900, Playstation Vita, among many others

Just to make a point 8/19

Embedded systems 9/19

 CPU, GPU, hardware accelerators, interfaces, ...
 All share same bus and memory

=> bottleneck!
 Not likely to change: energy optimized architecture

OpenGL ES

 “streamlined” OpenGL
 Removed obscure methods
 Optimize existing methods for low pow performance hardware
 Introduce new specialized methods and data structures

 Based on OpenGL 1.3 (OpenGL ES 1.x) resp. OpenGL
2.0 (OpenGL ES 2.0, but is closely related to OpenGL
3.0)

 OpenGL ES 3.0: basically OpenGL ES 2.0, but with
extensions to make it more flexible

 10/19

Differences to OpenGL3.0 11/19

 No geometry or tesselation shader
 OpenGL ES 1.x: no shader at all

 No anti-alias (would cost too much memory)

 Scissor buffer
 Like stencil buffer, but only for rectangles => much faster

Differences to OpenGL3.0

 Only 2D textures
 No 3D textures for particle effects like smoke, fire, water
 3D textures introduced in OpenGL ES 3.0, but I discourage

strongly to use them

 Better support for texture compression
 Lossy compression, typically 30 db PSNR @ 1:6 compression
 Very low decoding complexity, decoding “on-the-fly”
 Most architectures support it in hardware

 12/19

Differences to OpenGL3.0

 No geometry or tesselation shader
 OpenGL ES 1.x: no shader at all

 Need to declare precision for shader variables and
functions

 13/19

Example

Open GL 3.0

 uniform sampler2D tex;
in vec2 coord;

out vec4 outColor;

void main(void)
{
outColor=texture(tex,coord);

}

OpenGL ES 2.0

precision mediump float;
uniform sampler2D tex;
varying vec2 coord;

void main(void)
{
gl_FragColor=texture2D(tex,coord);

}

 14/19

Which OpenGL ES?

OpenGL ES 1.x Pipeline

 15/19

Which OpenGL ES?

OpenGL ES 2.0/3.0 Pipeline

 16/19

Which OpenGL ES?

 OpenGL ES 1.x
 For very low complex hardware
 Might seem to be easier: no shader programming needed
 But in reality: needs fiddling to get the right effect, if at all

possible

 OpenGL ES 3.0
 Not widely supported yet
 You might need some of its new functionality though

=> OpenGL ES 3.0 safest bet right now

 17/19

Design guideline

 Be much more performance aware
 Reuse shaders whenever possible
 Avoid branches (ifs), unroll loops
 Often: rather recomputation than additional memory accesses
 Texture compression often supported by hardware, therefore “for

free”,but be careful if you are using the texture not as a picture,
but as a cheap way to send data to the GPU

 Use only as high precision as needed, prefer fixpoint
 Don't use dynamic textures or array index calculation in the

shader
 Redraw only as much as needed
 Think twice before using framebuffers, pingponging etc.

 But you can of course bend the rules, just make sure
you know what you are doing!

 18/19

Pictures from the demo 19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

