
Open GL ES

Introduction 1/19

 3D graphics for embedded systems
 Smart phones
 Pads
 Portable Multimedia Systems
 Gaming consoles (both portable and stationary)
 Settop boxes

 Motivation
 Mobile gaming (iOS, Android) fast growing market
 Portable gaming consoles (Nintendo 3DS, Playstation Vita)
 Also: stationary consoles (Ouya)

Introduction 2/19

 Example architectures
 Imagination Technologies PowerVR (market leader)
 ARM Mali
 Qualcomm Adreno (former: by ATI)
 NVIDIA Tegra (caution: no unified architecture!)

 Two flavors
 OpenGL ES 1.x: fixed pipeline
 OpenGL ES 2.0/3.0: shaders
 Not compatible with each other!

Introduction 3/19

 OpenGL ES 1.x
 Android since 1.6
 iOS
 Nintendo 3DS
 Playstation 3 (supports parts from Open GL ES 2.0 as well)

 OpenGL ES 2.0
 iOs (since Iphone 3GS)
 Android (since 2.0)
 Playstation Vita
 Chosen as basis for WebGL

Examples 4/19

Left: screenshot from Horn, right: screenshot from Riptide

Why OpenGL ES? 5/19

 Many of these systems support “normal” OpenGL as
well, but...
 Not all of them
 OpenGL ES designed with embedded systems in mind

=> reaches higher performance

 The only reason to use “normal” OpenGL is when you
need a feature not included in OpenGL ES
 But beware: there is probably a good reason why it is absent

Embedded systems 6/19

 Low performance (compared to PC)
 Cost
 Runtime (note that battery technique hasn't improved much in

recent years
 No active cooling! (Otherwise too big)

 High Resolution
 iPad(4): 2048x1536
 Nexus 10: 2569x1600

=> Specialized solution needed!

Embedded systems 7/19

Found in: iPhone (since version 4), iPad (since version 2), Nexus
S, Samsung Galaxy S, Samsung Galaxy Tab, Sony Ericsson
Vivaz, Nokia N900, Playstation Vita, among many others

Just to make a point 8/19

Embedded systems 9/19

 CPU, GPU, hardware accelerators, interfaces, ...
 All share same bus and memory

=> bottleneck!
 Not likely to change: energy optimized architecture

OpenGL ES

 “streamlined” OpenGL
 Removed obscure methods
 Optimize existing methods for low pow performance hardware
 Introduce new specialized methods and data structures

 Based on OpenGL 1.3 (OpenGL ES 1.x) resp. OpenGL
2.0 (OpenGL ES 2.0, but is closely related to OpenGL
3.0)

 OpenGL ES 3.0: basically OpenGL ES 2.0, but with
extensions to make it more flexible

 10/19

Differences to OpenGL3.0 11/19

 No geometry or tesselation shader
 OpenGL ES 1.x: no shader at all

 No anti-alias (would cost too much memory)

 Scissor buffer
 Like stencil buffer, but only for rectangles => much faster

Differences to OpenGL3.0

 Only 2D textures
 No 3D textures for particle effects like smoke, fire, water
 3D textures introduced in OpenGL ES 3.0, but I discourage

strongly to use them

 Better support for texture compression
 Lossy compression, typically 30 db PSNR @ 1:6 compression
 Very low decoding complexity, decoding “on-the-fly”
 Most architectures support it in hardware

 12/19

Differences to OpenGL3.0

 No geometry or tesselation shader
 OpenGL ES 1.x: no shader at all

 Need to declare precision for shader variables and
functions

 13/19

Example

Open GL 3.0

 uniform sampler2D tex;
in vec2 coord;

out vec4 outColor;

void main(void)
{
outColor=texture(tex,coord);

}

OpenGL ES 2.0

precision mediump float;
uniform sampler2D tex;
varying vec2 coord;

void main(void)
{
gl_FragColor=texture2D(tex,coord);

}

 14/19

Which OpenGL ES?

OpenGL ES 1.x Pipeline

 15/19

Which OpenGL ES?

OpenGL ES 2.0/3.0 Pipeline

 16/19

Which OpenGL ES?

 OpenGL ES 1.x
 For very low complex hardware
 Might seem to be easier: no shader programming needed
 But in reality: needs fiddling to get the right effect, if at all

possible

 OpenGL ES 3.0
 Not widely supported yet
 You might need some of its new functionality though

=> OpenGL ES 3.0 safest bet right now

 17/19

Design guideline

 Be much more performance aware
 Reuse shaders whenever possible
 Avoid branches (ifs), unroll loops
 Often: rather recomputation than additional memory accesses
 Texture compression often supported by hardware, therefore “for

free”,but be careful if you are using the texture not as a picture,
but as a cheap way to send data to the GPU

 Use only as high precision as needed, prefer fixpoint
 Don't use dynamic textures or array index calculation in the

shader
 Redraw only as much as needed
 Think twice before using framebuffers, pingponging etc.

 But you can of course bend the rules, just make sure
you know what you are doing!

 18/19

Pictures from the demo 19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

