"#i Information Coding / Computer Graphics, ISY, LITH
-, 0

S

Rotation around arbitrary axis

Two methods

:\T‘ ‘# : Information Coding / Computer Graphics, ISY, LiTH
B

Rotation around arbitrary axis

>

¥

/ /- X

Transform to align axis with the Z axis, rotate, and
transform back.

:s .wyg: Information Coding / Computer Graphics, ISY, LiTH
o, P

Definition of the rotation axis

y

> X
/ P1

z

p1 and p2 define the rotation axis

f w#t" Information Coding / Computer Graphics, ISY, LiTH
"o

Translate to origin

T(-p1)
s"é- = ‘%ta
: ‘# : Information Coding / Computer Graphics, ISY, LiTH
o

Finding an angle to rotate around X

¥

Project u on the yz plane = (0, uy, u;)

f w#t" Information Coding / Computer Graphics, ISY, LiTH
"o

Rotate around X

Information Coding / Computer Graphics, ISY, LiTH

Finding an angle to rotate
around Y

u" and z gives the angle B in the xz plane

:\T‘ _‘#t*: Information Coding / Computer Graphics, ISY, LiTH
H"‘"&w

Rotate around Y

¥

*____;_’f
—
Ry(B)
:s .wyg: Information Coding / Computer Graphics, ISY, LiTH
o, P

Rotation around arbitrary axis, summary:

1 0 0 O
The axis to rotate around is given Ry = O uz/d -uy/d O
as two points, p1 and p2. 0 uy/d uz/d O
0 0 0 1

V=p2-pP1
u=v/lvl=(ux uy uz) Normalized! d 0 wuy O
d= UUy2+U22) Ry = 0 1 0 0
ux 0 d O
0 0 0 1

Total transformation:

R(6) = T(p1) * RxT * RyT * Rz(0) * Ry * Rx * T(-p1)

:\T‘ ‘# : Information Coding / Computer Graphics, ISY, LiTH
w7

Rotation around arbitrary axis in OpenGL

y

/ * X

z

Create matrices, multiply on CPU, upload to uniform matrices.

:s .wyg: Information Coding / Computer Graphics, ISY, LiTH
o,

Rotation around arbitrary axis,
using change of basis:

Uxi Ux2 Uxz O

V=p2-M

. R= UyiUy2 Uys O
uz=u=Vv/lvl=(ux Uy, uz) Normalized! Uz{ Uzp Uzz O
Uy = U X (Ux0,0) /1 U X (Ux,0,0) | 0 0 0 1

Ux = Uy X Uz

Total transformation:

R(6) = T(p1) * RT * Rz(6) * R * T(-p1)

:\T‘ ‘# : Information Coding / Computer Graphics, ISY, LiTH
B

The Normal matrix

When placing a model in the world, normals
must be rotated...

N

:\4 .wyg: Information Coding / Computer Graphics, ISY, LiTH
o, P

but they must not be translated...

/

:\T‘ ‘# : Information Coding / Computer Graphics, ISY, LiTH
B

so we just cast to mat3, right?

}x rrr
/ _— rrr
i rrr

or we zero the translation part:

Ty r
ty » r
itz r
1 0

It worked in the lab... but...

o= =
[T B]
[e I
—
™

[N
[T
[
[
[
===

:s .wyg: Information Coding / Computer Graphics, ISY, LiTH
o, P

But wait!

For non-uniform scaling, this does not work!

Scale x by 2 =>

The normal vector is no longer
perpendicular to surface!

:f ‘# : Information Coding / Computer Graphics, ISY, LiTH
B

But what if we do the opposite...

Scale geometry
by 2 along x
Scale normal by
1/2 along x

=>

Suddenly things look better...

but what happens if we mix in rotations?

:i .wyg: Information Coding / Computer Graphics, ISY, LiTH
o,

Normal matrix, full solution
Invert scaling, keep rotation

1) Invert to reverse both
2) Transpose to reverse rotation

=> Use inverse transpose of rotation part

N = (M-1)T

