

Rotation around arbitrary axis Two methods

Rotation around arbitrary axis

Transform to align axis with the Z axis, rotate, and transform back.

Information Coding / Computer Graphics, ISY, LiTH

Definition of the rotation axis

p₁ and p₂ define the rotation axis

Translate to origin

Information Coding / Computer Graphics, ISY, LiTH

Finding an angle to rotate around X

Project u on the yz plane = $(0, u_y, u_z)$

Rotate around X

 $R_X(\alpha)$

Information Coding / Computer Graphics, ISY, LiTH

Finding an angle to rotate around Y

u" and \hat{z} gives the angle ß in the xz plane

Rotate around Y

 $R_{y}(B)$

Information Coding / Computer Graphics, ISY, LiTH

Rotation around arbitrary axis, summary:

The axis to rotate around is given as two points, \mathbf{p}_1 and \mathbf{p}_2 .

$$v = p_2 - p_1$$

$$\mathbf{u} = \mathbf{v} / |\mathbf{v}| = (\mathbf{u}_{\mathsf{X}}, \mathbf{u}_{\mathsf{V}}, \mathbf{u}_{\mathsf{Z}})$$
 Normalized!

$$d = \sqrt{u_V^2 + u_Z^2}$$

$$\mathbf{R}_{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & u_{z}/d - u_{y}/d & 0 \\ 0 & u_{y}/d & u_{z}/d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}\mathbf{y} = \begin{bmatrix} d & 0 & -\mathbf{u}_{\mathbf{x}} & 0 \\ 0 & 1 & 0 & 0 \\ \mathbf{u}_{\mathbf{x}} & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Total transformation:

$$R(\theta) = T(p_1) * R_x^T * R_y^T * R_z(\theta) * R_y * R_x * T(-p_1)$$

Rotation around arbitrary axis in OpenGL

Create matrices, multiply on CPU, upload to uniform matrices.

Information Coding / Computer Graphics, ISY, LiTH

Rotation around arbitrary axis, using change of basis:

$$\begin{aligned} \mathbf{v} &= \mathbf{p}_2 - \mathbf{p}_1 \\ \mathbf{u}_{\mathbf{z}} &= \mathbf{u} = \mathbf{v} / |\mathbf{v}| = (\mathbf{u}_{\mathbf{x}}, \, \mathbf{u}_{\mathbf{y}}, \, \mathbf{u}_{\mathbf{z}}) \text{ Normalized!} \\ \mathbf{u}_{\mathbf{y}} &= \mathbf{u} \times (\mathbf{u}_{\mathbf{x}}, 0, 0) / |\mathbf{u} \times (\mathbf{u}_{\mathbf{x}}, 0, 0)| \end{aligned} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{u}_{\mathbf{x}1} \, \mathbf{u}_{\mathbf{x}2} \, \mathbf{u}_{\mathbf{x}3} \, 0 \\ \mathbf{u}_{\mathbf{y}1} \, \mathbf{u}_{\mathbf{y}2} \, \mathbf{u}_{\mathbf{y}3} \, 0 \\ \mathbf{u}_{\mathbf{z}1} \, \mathbf{u}_{\mathbf{z}2} \, \mathbf{u}_{\mathbf{z}3} \, 0 \\ 0 \, 0 \, 0 \, 1 \end{bmatrix}$$

$$\mathbf{u}_{\mathbf{x}} &= \mathbf{u}_{\mathbf{y}} \times \mathbf{u}_{\mathbf{z}}$$

Total transformation:

$$R(\theta) = T(p_1) * R^T * R_z(\theta) * R * T(-p_1)$$

The Normal matrix

When placing a model in the world, normals must be rotated...

Information Coding / Computer Graphics, ISY, LiTH

but they must not be translated...

so we just cast to mat3, right?

or we zero the translation part:

It worked in the lab... but...

Information Coding / Computer Graphics, ISY, LiTH

But wait!

For non-uniform scaling, this does not work!

The normal vector is no longer perpendicular to surface!

But what if we do the opposite...

Suddenly things look better... but what happens if we mix in rotations?

Information Coding / Computer Graphics, ISY, LiTH

Normal matrix, full solution

Invert scaling, keep rotation

1) Invert to reverse both2) Transpose to reverse rotation

=> Use inverse transpose of rotation part

$$N = (M^{-1})^{\mathsf{T}}$$